Specification	PCE
Physical and chemical properties	OPALIKA [®]

OPALIKA® D 0200.

WHITE FLASHED OPAL GLASS

OPALIKA® filterglass consisting of a colourless base glass which serves as a carrier material and a thin white flashed layer for producing a diffuse and shadow reducing light.

OPALIKA® is used as cover panes for drawing desks, in X-ray viewing screens and other devices in measuring techniques and medicine

It is also used in light emitting ceilings and walls, in ornamental glazing in hotel foyers, in shops, in offices, banks, museums and in the furniture industry.

OPALIKA® is supplied with nearly constant white flashed layer in six different base glass thicknesses to suit all mechanical requirements.

The subsequent properties are based primarily upon the measuring results of the very latest standards and measuring methods, which are defined in corresponding "Measuring and Test Procedures". We retain the right to change the data in keeping with the latest technical standards. Non-toleranced numerical values are reference values of an average production quality.

Values marked with ◊ do not apply to the type of glass or no values are available.

Requirements deviating from these specifications must be defined in writing in a customer agreement.

VX 0050/1e

05.2006/1 page: 1 to 6

Specification			PCE	
Physical and chemical properties			PALIKA®	
1.	Optical properties			
1.1	Refractive index (base glass, annealed at 40 °C/h)	n _e	1.525	
1.2	Transmittance data			
1.2.1	Spectral transmittance $ au$ (λ)			
1.2.1.1	$ au\left(\lambda ight)$ - curve			
	Plot of spectral transmittance τ (λ) for (λ = 300 nm to 800 nm) $\tau_{\rm vA}$ = 32 %		see annex	
1.2.2	Luminous transmittance $ au_{v}$			
	The luminous transmittance is dependent on the white layer thickness of which varies over the manufacturing width and generally in the order of 0.45 mm + 0.35 mm / - 0.2 mm . At the indicated nominal thickness of the white layer of 0.45 mm the following luminous transmittance $\tau_{\rm VA}$ in % is reached	d is the		
	(refer also 6.2).		32 ± 8	
2.	Thermal properties (only base glass)			
2.1	Viscosities and corresponding temperatures			
	Softening point in °C ($\eta = 10^{7.6}$ dPas)		719 (~1326 °F)	
2.2	Transformation temperature <i>Tg</i> in °C		533 (~991 °F)	
2.3	Coefficient of thermal expansion $lpha$	•		
2.3.1	Coefficient of mean linear thermal expansion α (20 °C;300 °C) in 10 ⁻⁶ K ⁻¹ (static measurement)		9.4	
	a (20 0,300 0) iii 10 ik (static measurement)		0.4	

Specification		PCE R		
Physical	OPALIKA [®]			
3.	Mechanical properties			
3.1	Density $ ho$ in g/cm 3	2.6		
3.2	Stress optical coefficient C in 1.02 · 10 ⁻¹² m²/N	2.7		
3.3	Breaking strength			
	Admissible value for the bending strength $\sigma_{ m zul}$ of technically			
	annealed glasses as calculation basis (air) in N/mm²	30		
	A higher mechanical strength is possible by			
	thermal toughening			
3.3.1	Chemical toughening	disregard		
3.3.2	Thermal toughening			
	The different viscosity characteristics of the white flashed laye	r		
	and the base glass have to be considered and to eventually			
	comply with the requirements of safty glass need to be checked	ed.		
	As a result of this heat treatment, the transmittance may vary			
	whilst at the same time the diffusion indicatrix (refer to 6.1)			
	changes accordingly.			
4.	Chemical properties			
	Because both types of glass do have a different behaviour			
	in resistance of water, acids and alkaline solutions, the usual			
	classification cannot be made. You can say that $OPALIKA^{®}$			
	is largely insensitive to the action of water, acids, alkalis and			
	salt solutions (with the exception of hydrofluoric acid).			
		I		

VX 0050/1e

05.2006/1 page: 3

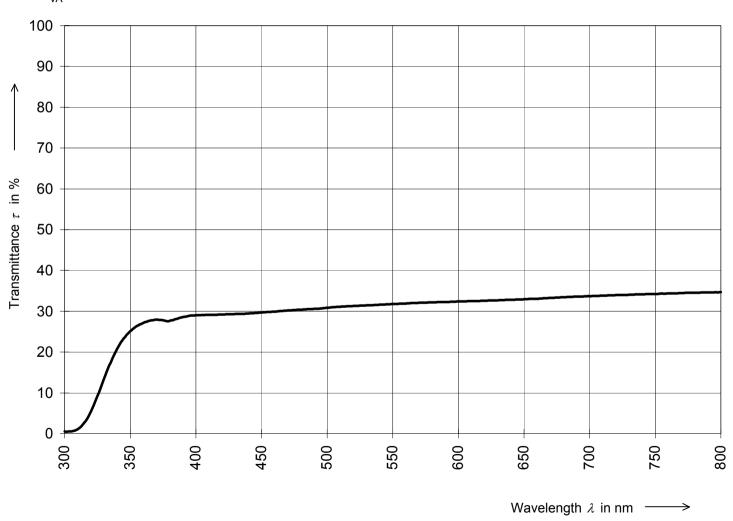
Spec	cification	PCE		
Physical and chemical properties		OPALIKA®		
6.	Other properties			
6.1	Light diffusion			
	In the visible range of the optical spectrum OPALIKA® gives			
	almost ideal diffusion, i.e. when represented graphically			
	the diffusion depending on angle (diffusion indicatrix) appears			
	nearly as a circle. The remaining proportion of the direct			
	radiation is superimposed and at the zero axis it appears			
	as a "nose" dependent on the wavelength. There is a sharp			
	increase with increasing wavelengths from λ = 800 nm onwards	3 .		
	Typical diffusion indicatrix (no specified size)	see annex		
6.2	Closer tolerances			
	For special requirements in technique of measurement closer			
	tolerances ($ au$ and $d_{ ext{white flashed layer}}$ respectively) are possible,			
	however, depending on the size of the panel.			
7.	Annex (diagrams, curves)			

05.2006/1 page: 4

05.2006/1

Specification

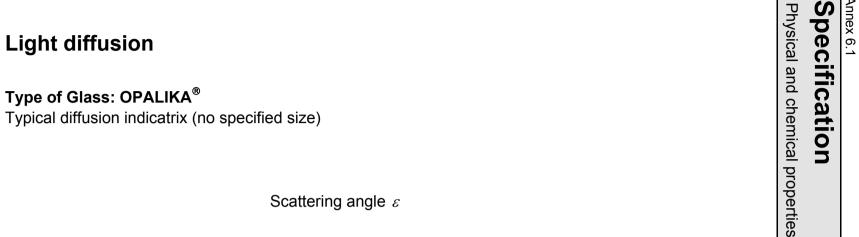
Physical and chemical properties


OPALIKA®

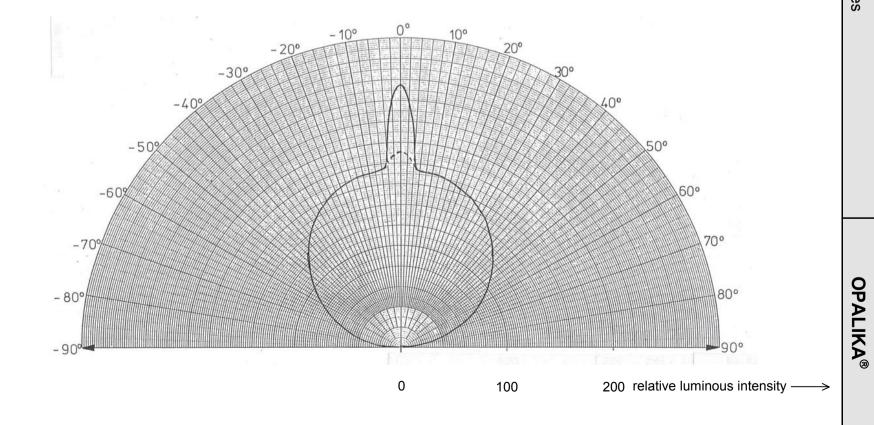
PCE

Spectral Transmittance

Type of Glass: OPALIKA®


$$\tau_{\text{vA}}$$
 = 32 %

page: 5


05.2006/1

PCE

Type of Glass: OPALIKA® Typical diffusion indicatrix (no specified size)

Scattering angle ε

