Published by Bullseye Glass Co.

PLATEMAKING TIPS

For Well-Crafted Kilnformed Vessels

We offer the following tips from our experience in teaching platemaking classes at Bullseye Resource Center and from our years of working with artists in the Bullseye factory studio.

Plates and platters are popular projects for both advanced and beginning kilnworkers, and platemaking is a perfect way to learn kilnforming's two most frequently used methods: fusing and slumping. The tips shown here are basic and they are the building blocks for more advanced kilnforming methods. Because the object is to make functional plates with smooth surfaces, these notes assume that the first firing will be to full fuse temperatures.

Figure 1: Two, 1/8" (3mm) layers fired to 1500°F (816°C). Notice that the area covered stays the same and the edges are straight.

Figure 2: Five, 1/8" (3mm) layers fired to 1500°F (816°C). Notice substantial spread in area.

Figure 3: One, 1/8" (3mm) layer fired to 1500°F (816°C). Notice how the edges pull in.

1. Remember the 1/4" (or 6mm) rule.

We suggest using two layers of 1/8" (3mm) glass for your base plate (with style codes ending in -0030). This will keep the overall thickness to about 1/4" (6mm) (Figure 1). If you stack higher, the plate will flow out beyond the original footprint (Figure 2). If you use only a single 1/8" (3mm) base layer, the edges will tend to pull inward (Figure 3), creating sharp "needle points" around the edge. This setup may also result in the formation of large bubbles between the shelf and the glass. (See TechNotes 5 Volume and Bubble Control for more information.) If you do use only a single base layer, be sure to completely cover that layer with the equivalent of another layer of glass in some form, such as cut sheet glass, frit, rod, etc. Likewise, you may consider using 1/4" (6mm) glass such as Tekta Clear 001100-0680 as your base layer.

2. Keep the design elements at least 3/4" (19mm) from the edge.

Once you have your 2-layer base, use small pieces of thin cut glass, frit, powder or stringer to create your design. Keep any heavy applications away from the edge. Piling too much glass at the perimeter will cause the glass to flow out and distort the footprint of your finished plate form at the edge, and may also result in the formation of bubbles between the base layers (Figure 4). (See also *TechNotes 5*.)

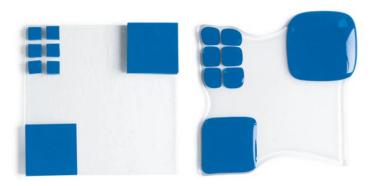


Figure 4
Stacking glass unevenly and close to edges can result in distortion of the shape of the fired glass.

3. Fire on fiber paper to prevent bubbles between the shelf and the plate.

Air trapped between the shelf and the base sheet can expand, creating air bubbles that may rise through your work and eventually erupt into unwanted craters on the surface. Firing on a sheet of fiber paper may allow the air to escape laterally through the fibers during the heating process.

4. For the cleanest release, use an iridescent glass (coated side down) against the shelf.

Bullseye iridescent glasses (with style codes ending in -0031, -0037, -0038) get their metallic sheen from a thin film of tin on the surface. Tin has a higher melting point than glass and on firing will not pick up shelf separators such as primer or the tiny fibers from fiber paper as readily as raw glass. Consider cutting a layer of iridescent glass for your base and using another glass as your top layer. Use a silver iridescent clear (001101-0037) base if you do not want the varied coloration of a clear rainbow iridescent (001101-0031).

5. For the sharpest lines and cleanest seams, fire design down.

For the cleanest butt-jointed seams, build your design (of tightly composed pieces) directly onto the shelf or shelf paper and cover with an uncut layer of glass (Figure 5). The top layer will hold the seams together during firing and leave a virtually invisible seam and crisper lines between colors. The same design laid up on top of the piece will result in softer lines between colors and seams that have pulled apart to reveal the color of the base glass.

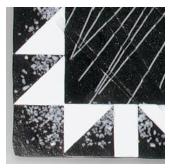


Figure 5
The design on the left was fired face down, The design on the right was fired face up. Notice the crisp edges of the design on the left.

6. Glass "sandwiches" are recipes for indigestion.

Avoid putting elements of frit, stringer or cut pieces of sheet between two solid layers of glass, unless you want a "boiled pizza" look to your plate (Figure 6).

Figure 6 In firing, the edges of this tile sealed, preventing the escape of air bubbles trapped between stringers.

7. Master Tip: Put an extra 45-60-minute soak stage into your firing cycle somewhere in the range of 1150-1250°F (621-677°C).

Air bubbles are the most common problem in beginning projects. Soaking your project somewhere in this range allows the top glass to settle onto the bottom glass slowly, pushing any interior pockets of air outward to the edges before they've sealed. We've built this soak into the firing schedule shown on page 4.

8. Clean the glass well before firing.

Fingerprints, oil marks and dust fire into the surface of glass and cannot be removed easily after fusing (or slumping). Thoroughly clean the top, bottom, and edge surfaces of the glass before firing. The surfaces between layers are less prone to showing dust than the top surface, but clean visible contaminants from all surfaces. For best results, avoid using cleaners that contain ammonia or detergents.

9. Place your glass in the middle of your kiln.

Even heating is critical. Glass can be heated very quickly if all areas of the glass heat at the same time. But no matter how slowly you heat up your glass, if one edge is right next to an element and the opposite edge is at the (cooler) center of the kiln, you can risk a thermal break. If you must place your glass off-center, or in some fashion in which it will not receive uniform heat treatment, lengthen the heating time.

10. Fuse and slump in separate firings.

Full fusing temperatures are much higher than slumping temperatures. If you attempt to fuse and slump in one step by firing to full fuse temperatures, the result will be an extremely misshapen piece of glass that is likely to have some large bubbles or craters and may be stuck to the mold. (Figure 8)

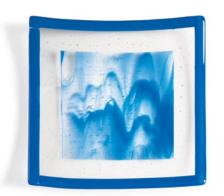
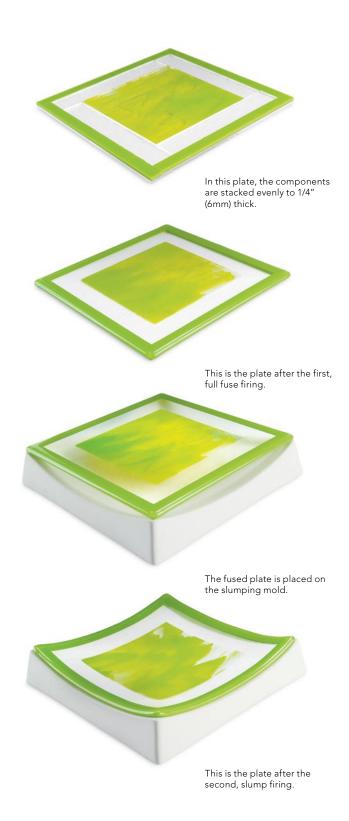



Figure 7 This plate was formed with two separate firings. The first was a full fuse and the second was a slump firing.

Figure 8
This plate was formed with a single firing for both fusing and slumping. This shortcut caused edge distortion and bubbles.

11. Learn from the happy accidents.

Platemaking is simple and can be nearly foolproof if you use Bullseye Compatible glass, conservative firing schedules (see next page), and simple design lay-ups. But if nothing ever goes wrong, you're not pushing the limits. When you encounter a problem, learn from it. Accidents are excellent teachers.

If your plate is larger than 9" (22.8cm), or if your elements are closer than 4" (10cm) to the glass, or if your kiln heats from the side rather than the top, increase the length of the heating stages (not the hold times). This means slowing the rate of heating. A decrease in rate of 25-50% is safe. In the case of your first stage, this means slowing from 400°F (222°C) to about 300°F (167°C) per hour.

Remember, you can always go slower. Firing too fast (i.e., unevenly) can result in breakage from thermal shock.

Slumping should be confirmed visually. Set an alarm for 50°F (28°C) below the process temperature and begin viewing the slumping by occasionally looking through the peephole or door (not the lid!) until the piece is fully slumped. You may need to skip to the next stage or extend the soak to achieve the desired result. Make a note of how long the slumping process took and at what temperature, for use in future firings. Some forms will slump at much lower temperatures than the one that we suggest here. Others may require slightly longer holds at higher temperatures. In general, it is a little better to slump at slightly lower temperatures for slightly longer times, as the glass will be less likely to pick up separators and unwanted details from the mold if it is slumped at a lower temperature.

Basic Fuse Firing

SEGMENT	RATE (DPH)*	TEMPERATURE	HOLD
1	400°F (222°C)	1250°F (677°C)	:30
2	600°F (333°C)	1480°F (804°C)	:10
3	AFAP	960°F (516°C)	1:00
4	100°F (83°C)	700°F (371°C)	:01
5	AFAP**	70°F (21°C)	:00

Basic Slump Firing

SEGMENT	RATE (DPH)*	TEMPERATURE	HOLD
1	300°F (167°C)	1225°F (663°C)	:10
2	AFAP	960°F (516°C)	1:00
3	100°F (56°C)	700°F (371°C)	:01
4	AFAP**	70°F (21°C)	:00

^{*} DPH = degrees per hour

For more information on firing, see Technotes 4: Heat and Glass.

^{**} Allow kiln to cool at its natural rate unless that is greater than 500°F (277°C) per hour.